Harmonic analysis on algebraic groups over two-dimensional local fields of equal characteristic

نویسندگان

  • Mikhail Kapranov
  • M. Kapranov
چکیده

Let K (K = K2 whose residue field is K1 whose residue field is K0, see the notation in section 1 of Part I) be a two-dimensional local field of equal characteristic. Thus K2 is isomorphic to the Laurent series field K1((t2)) over K1. It is convenient to think of elements of K2 as (formal) loops over K1. Even in the case where char (K1) = 0, it is still convenient to think of elements of K1 as (generalized) loops over K0 so that K2 consists of double loops. Denote the residue map OK2 → K1 by p2 and the residue map OK1 → K0 by p1. Then the ring of integers OK of K as of a two-dimensional local field (see subsection 1.1 of Part I) coincides with p−1 2 (OK1 ). Let G be a split simple simply connected algebraic group over Z (e.g. G = SL2 ). Let T ⊂ B ⊂ G be a fixed maximal torus and Borel subgroup of G; put N = [B,B], and let W be the Weyl group of G. All of them are viewed as group schemes. Let L = Hom(Gm, T ) be the coweight lattice of G; the Weyl group acts on L. Recall that I(K1) = p −1 1 (B(Fq)) is called an Iwahori subgroup of G(K1) and T (OK1 )N (K1) can be seen as the “connected component of unity” in B(K1). The latter name is explained naturally if we think of elements of B(K1) as being loops with values in B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 7 Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

Harmonic analysis on local fields and adelic spaces I

We develop a harmonic analysis on objects of some category C 2 of infinite-dimensional filtered vector spaces over a finite field. It includes two-dimensional local fields and adelic spaces of algebraic surfaces defined over a finite field. The main result is the theory of the Fourier transform on these objects and two-dimensional Poisson formulas.

متن کامل

Double Affine Hecke Algebras and 2-dimensional Local Fields

The concept of an n-dimensional local field was introduced by A.N. Parshin [Pa1] with the aim of generalizing the classical adelic formalism to (absolutely) ndimensional schemes. By definition, a 0-dimensional local field is just a finite field, and an n-dimensional local field, n > 0, is a complete discrete valued field whose residue field is (n − 1)-dimensional local. Thus for n = 1 we get lo...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Iwahori-hecke Algebras of Sl2 over 2-dimensional Local Fields

Hecke algebras were first studied because of their role in the representation theory of p-adic groups, or algebraic groups over 1-dimensional local fields. There are two important classes of Hecke algebras. One is spherical Hecke algebras attached to maximal compact open subgroups, and the other is Iwahori-Hecke algebras attached to Iwahori subgroups. A spherical Hecke algebra is isomorphic to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008